

International Year of Planet Earth Launch Event

Population Growth and Climate Change : their impact on Planet Earth and its Human Societies

Ghislain de Marsily

Emeritus Professor at University Paris VI French Acad. of Sciences, Foreign Associate, US Nat. Acad. of Engineering

February 12, 2008

INSTITUT DE FRANCE Académie des sciences

Reference :

French Academy of Sciences

"Science and Technology Report" # 25

Prepared for the French Government Published, October, 16, 2006 "EDB Sciences" Paris, 222 p

"EDP Sciences" Paris, 322 p.

Title : "Continental Waters" "Les Eaux Continentales" (in French, abstract in English)

Outline :

- Current water shortages
- Hydrologic consequences of climate change on water resources
- Water for food & demographic growth
- Water for biofuel production
- Ecosystems
- Droughts
- Conclusions

Current water shortages...

Zones with water shortages in 2000, fom IWMI [2007].

<u>Red</u> : Physical water shortage ; more than 75% of the river flow is withdrawn for human needs, taking into account recycling

<u>Pink</u> : More than 60% of the river flow is withdrawn. These basins will soon become red <u>Orange</u> : Economical water shortage. Resources are large compared to the withdrawals, with less than 25% of the river flow, but the population is undernourished.

The financial resource is lacking for water resource development.

Blue : Abundant water resources. Withdrawal are less than 25% of river flow.

Expected effects of Climate Change...

Consequences of Climate Changes on the hydrologic regime : More uncertainties than for temperature... but :

- General acceleration of the water cycle (more evaporation on oceans and continents, more rainfall...)
- Globally, a general shift of the climate zones form the Equator towards the Poles
- With large regional variations
- And large controversies on extreme events...

Variation of rainfall (from pole to pole) for 15 climate models, and current observations

Variation of rainfall (from pole to pole) for 15 climate models, and observations

Variations (in %) of Rainfall between 2050-99 and 1950-99 December January February Mars

DJFM P anomaly (%) [2050-99]-[1950-99]

Variations (in %) of Rainfall between 2050-99 and 1950-99 June July August September

IPCC Report, 2007

PROJECTED PATTERNS OF PRECIPITATION CHANGES

Likely changes after 2050

Geographic Zone	December to March	June to September
Equatorial Africa	+25%	+10%
African Sahel	Uncertain +/- 10%	+30%
North Africa	-15%	-10%
Southern Europe	uncertain +/-10%	-20%
France on average	+15%	uncertain +/- 10%
Scandinavia, Siberia	+25%	+15%

Variations of the extremes

Hydrologic magnitude (e.g. annual rainfall, annual peak flow in a river...)

Consequences : Water in the soil, Floods and ice melting

• In Mediterranean-latitude zones :

-Large **decrease of soil water content** (higher evapotranspiration, lower rainfall in summer), more irrigation water needed

-Increased risk of **edaphic (agricultural) droughts**, more than **hydrologic droughts**

-Increased risk of forest fires

- In Northern latitudes : floods are probably more of concern
- **Mountain Ice melting** (Cordillera of the Andes, Alps, Himalayas...)

Changes in flow rates of rivers

Note: Two different climate models (ECHAM4 and HadCM3). **Source:** Lehner *et al.*, 2001.

Change in average annual river discharge in Europe 2070 versus 2000

Source: Henrichs et al 2002; EEA (2004) – (Eurowasser)

Water Stress in Europe, 2030 (From EU Water saving potential, Fig 12, July 2007)

Water for food and demographic growth...

Water Demand	1900	1950	1980	1990	2000
Population (millions)	2,000	2,542	4,410	5,285	6,200
Total annual withdrawal, km ³ /y	579	1,382	3,175	3,632	4,000
Total Consumption, km ³ /y	330	758	1,554	1,821	1,950
Irrigated area, M ha	47.3	101	198	243	265
Agricultural withdrawal, km ³ /y	513	1,080	2,112	2,425	2,600
Agricultural consumption, km ³ /y	321	722	1,445	1,697	1,800
Consumption/withdrawal ratio	63 %	67 %	68 %	70 %	70 %
Cultivated area, M ha					1,300
Rain-fed Agriculture, km ³ /y					5,000
Domestic withdrawal, km ³ /y	21.5	86.7	219	305	380
Domestic Consumption, km ³ /y	4.6	16.7	38.3	45	50
Consumption/withdrawal ratio	21 %	19 %	17 %	15 %	14 %
Industrial withdrawal, km ³ /y	44	204	713	735	780
Industrial Consumption, km ³ /y	5	19	71	79	100
Consumption/withdrawal ratio	11 %	9 %	10 %	11 %	11 %
Evaporation from dams, km ³ /y	0.3	11.1	131	167	210

Adapted from Shiklomanov, 1999, and Académie des Sc., 2006 (Estimated available water resource : 13,500 km³/y for withdrawal)

Today's situation :

- Today, 6.2 billion inhabitants
- Among which **856 millions undernourished**, this number was decreasing for the last 50 years, but has started to increase for the last 5 years.
- Food comes from :
 - 265 millions irrigated ha, (water : 1,800 km³/an)
 - 1,300 millions ha rain-fed agriculture (water : 5,000 km³/an)
 - 17% of irrigated land produces 40% of the food
- Rice, maize and wheat currently provide, in equal shares, 60% of the world food production (around 700 million tons/ year each).
- Rice and maize depend greatly on irrigation water supply.

In 2050

About 9 billion inhabitants, i.e. ~ 70 millions more/y
More food required to feed them and eradicate current hunger (856 million people); diet changes must also be considered :

Plant products	Water consumed	Animal products	Water consumed
Vegetable oil	5000	Beef	13,000
Rice	1500-2000	Poultry	4,000
Wheat, C3 cereals	1000	Eggs	2,700
Corn, C4 cereals	700	Milk	800
Citrus fruit	400		
Vegetables	200-400		
Potatoes	100		

Water needed (m³/t) to produce raw food (consumed fraction, not in dry matter)

The food multiplier factor 2050/2000

(Cereals)

Regions	Asia	Latin America	West Asia North Africa	Sub- Saharan Africa	OECD and Russia
Food needs multiplier 2050/2000	2.34	1.92	≈2.5	5.14	≈1
Production 2000, Mt	1800	272	154	262	-
Production needed in 2050, Mt	4150	520	390	1350	Idem 2000

From P. Collomb and M. Griffon (2006).

Solutions :

4,500 km³/y additional water is needed

- Improve crop efficiency
- more irrigated crops
- more rain-fed agriculture
- Favour the cultivation of hardier, less "thirsty" varieties, and develop new ones that are more suited to semiarid conditions (30 to 40 % of the earth's surface is arid or semiarid) or even to slightly saline soils (several tens of millions of hectares).
- But genetic means cannot drastically modify the "water for CO₂" exchange....

Irrigated agriculture

- Today 264 million ha
- Current rate of increase : 1.34 millions ha/y
- In 2050, with current rate, 331 millions ha
- Additional water consumption 500 km³/y

 Insufficient...compared to the nedeed 4,500 km³/y ... multiply by 10 the rate of increase ???? More dams and canals ?

Rain-fed agriculture

- Current rain-fed agriculture :1.3 billion ha, using 5,000 km³/y
- Total continental surface area :13,4 billion ha
- 4,2 billion ha could be cultivated (FAO)
- Find 1 billion more ha...(forest, marshland, steppe..)?

Land available for agriculture in 2000 (10⁶ha)

	World	Asia	Latin Amer.	WANA	SS Africa	OECD	Russia
Area cultivated 2000 (a)	1600	439	203	86	228	387	265
Area fitted for agriculture (b)	4400 (IIASA) 4153 (FAO)	586	1066	99	1031	874	497
a/b	39%	75%	19%	87%	22%	44%	53%

Scenario 1: Tendancy; increase based on rain-fed agriculture, Yields and Surface Area (Griffon, 2006)

	Asia	Latin Am.	WANA	SSAfrica
A: increase (M ha) of agr. to supply food for needs in 2050	+50 (100 kept for protected areas)	+185	0 All space used	+600 (200 kept for protected areas)
B: assumtions on rain-fed yields	+50% (possible but difficult) 4t/ha=>6t/ha	No change 1.35t/ha	Difficult to increase significantly yields; lack water	+40% Starting from low yields (1.15t/ha) could reach easily 1.60t/ha
C: expected increase of production (Mt)	≈+1200	+250	0	+1090
D: Total expected production 2050 (prod 2000+C)	3000	≈520	154	1350
E: Needs 2050	4150	520	154	1350
F:Deficit 2050 (D- E)	-1150	0	-236	0

Scenario 3: Compensation of deficits by Latin America only (Africa balance =0) (Griffon, 2006)

	Asia	Latin America	WANA	SSAfrica
Production needed	4150	520	390	1350
Production obtained	3190±100	1704±100	166±10	1350
Shortage / surplus	-960 ±100	+1184 ±100	-224 ±10	0

What if land was also used for energy production from biomass?

Scenario 5: Combining food and energy : reasonably ambicious for 2050 (Griffon, 2006) Million ha

	Asia	Latin America	WANA	SSAfrica	OECD	Russia and CIS	World
Area fitted for cropping	585	1,066	99	1,031	874	497	4,152
Protected areas	100	300	0	200	300	100	1,000
Area for food	460	646	99	711	424	247	2,587
Area for irrigation	250	26	49	17	24	47	413
Area rain- fed	210	620	50	694	400	200	2,174
Area for energy	25	120	0	120	150	150	565

Conclusions on Water and Food

The World can be fed by 2050 with 9 billion inhabitants
Large international food exchange required (virtual water)
Water and land resources management will be very demanding

-allocation of resources, i.e. land and water
-optimal allocation of crops between rain fed and irrigated agriculture
-optimal crop efficiency,
-little room available for biofuels...
see also Paul Crutzen, N₂O
-Biodiversity conservation, if any left... ????
-droughts management...

Water and land for ecosystems...

Blue Nile falls near lake Tana (Ethiopia)

AAL

Okavango Delta (Namibia) Kinzelbach, 2006

Population Index = 100 in 1970

Source: WWF, UNEP-WCMC

Drought situations

Mike Davis

Génocides tropicaux

naturelles et famines coloniales Aux origines du sous-développement

Drought, 1876-1878, and 1896-1900

Deaths due to Famine

India	1876-1879	10 million
	1896-1902	20 million
China	1876-1879	20 million
	1896-1900	10 million
Brazil	1876-1879	1 million
	1896-1900	?
Total		30 to 60
		million

i.e. 4% of the World's population (1.5 billion in 1875)

Monsoon area, El Niño influence

Davis, 2006

<u>Strong and Very Strong El Niño years,</u> <u>1525 – 2000 (Ortlieb, 2000)</u>:

1539, 1546, 1552, 1559, 1567, 1574, 1578, 1589, 1600, 1604, 1607, 1614, 1618, 1621, 1630, 1640, 1650, 1652, **1661**, 1671, 1681, 1687, **1694**, 1703, 1715, 1723, **1728**, 1737, 1747, 1761, 1776, **1782**, **1790**, 1802, 1814, 1824, 1827, 1832, 1837, **1844**, 1850, 1854, 1864, 1867, **1876**, **1877**, 1887, **1891**, **1899**, 1904, 1913, 1918, 1925, **1940**, **1983, 1998**,

on average, 2/century

World Stocks

- At present ~400 million tons of cereals, less than
 2 month needs (it used to be more than 1 year)
- EI-Niño 1998, strong deficit in China and Indonesia, massive international buy, very low stocks
- Consumption 2270 million tons/y of cereals (2004), representing 60% of the World's food, 1/3 wheat, rice, corn
- Meat stock alive however larger than 2 month needs

Conclusion

- Climate change may significantly affect Mediterranean-latitude zones, with water resources decrease and increased risk of droughts, food deficit, fires
- Continued demographic growth is likely to force many countries in Asia, the Middle East and North Africa to import food from other continents
- The World is likely to be able to feed 9 billion inhabitants, but at the expense of natural ecosystems and biodiversity (little room for biofuels)
- Severe droughts could occur simultaneously, as they did in the past, on several continents, and trigger famines of unknown magnitude

Thank you !